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Abstract

The techniques of Lie group analysis can be used
to determine absolute invariant functions which
serve as classifier functions in object recogni-
tion problems. Previously, the Lie groups were
found for the conservation equation describing
the energy exchange at the surface of an object
viewed with an infrared camera. The result was
that only trivial absolute invariants exist for the
thermophysical model. Consequently, two new
topics are presented: First, many model approx-
imations are analyzed based on a thermocouple
data set. Second, a formal definition is given for
quasi-invariance and selected results are shown
for a particular type a quasi-invariant, called
a dominant-subspace invariant. More extensive
background and results are available in an ex-
tended version of this paper.

1 Introduction

Lie group analysis will determine if there exists
a non-trivial function ® which assumes a con-
stant value on the set of all roots of an equa-

tion f(Z) = 0. The form of the equation re-
mains constant regardless of which particular
object we are measuring (viewing), but some of
the coefficients in this equation may (and gen-
erally will) change depending upon the object
being viewed, as for example when f(zZ) = 0
expresses a conservation equation. As a result,
the set of roots will differ depending upon the
object being viewed. Correspondingly the con-
stant value ®(z) will assume a different value
depending upon the object being viewed, thus
permitting the use of ® as a classifier function.

Quasi-invariants are a generalization of abso-
lute invariants. Non-trivial absolute invariants
are generally rare. Because the restrictions
required for absolute invariance are relaxed,
quasi-invariants are more common. These types
of functions could be just as useful as abso-
lute invariants in practice. A constructive al-
gorithm is developed to find a particular type
of quasi-invariant called a Dominant-Subspace
Invariant (DSI). Experimental results validate
the approach.



In section 2, several model approximation are
presented and evaluated. In section 3, a fig-
ure shows the range of thermophysical proper-
ties found for typical building materials. Sec-
tion 4 defines quasi-invariance and presents an
algorithm for finding a particular type of quasi-
invariant. Finally, experimental data is used to
confirm the potential usefulness of these new
functions.

2 Approximations to the
Thermophysical Model

Many different model variations have been pro-
posed [Incropera and DeWitt, 1981] and used
to simplify the conservation equation,

[ = [Wsascosd+ Wi Ay,
— [eoT] = [—h(Tno — Ts)]
T T
il Sl 1)

Common approximations to the conservation
equation include linearizing the radiation term
(T#), removing the storage term (thus consider-
ing the conservation of energy for a unit surface
instead of a control volume), and using finite
differences to approximate the partial deriva-
tives. Finally, W, may be approximated by T4,
or (more appropriately) by Tfky. The cost of
each approximation is quantified in order for
the usefulness of the approximations to be more
fully understood.

2.1 Approximating W,

The long-wave insolation term is strongly re-
lated to the apparent temperature of the sky.
In the absence of a pyranometer to measure this
component, a common approximation is to esti-
mate Ty, and use the Stefan-Boltzmann Law
such that

W, =~ GWO'T;lky.

A simpler and more common approximation is
to use Ty
~ 4
W~ ewoT,,.

If ey = 1, thisis an idealized blackbody approx-
imation. Figure 2 shows that with the correct
selection of ey (idealized graybody), this is a
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Figure 1: Approximating long-wave insolation
(W;) by an idealized blackbody

(e = 1) emitter at temperature

Ts. The RMS error is 8027 which

corresponds to a 28% error.
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Figure 2: Approximating long-wave insolation
(W) by an idealized graybody emit-
ter at temperature T,,. The RMS
error is 3405 for ey = 0.79 which
corresponds to a 12% error.



fair approximation. The shape of the approx-
imation is close to that of W;. However, the
error is large (in absolute terms) because the
mean and variance of the 2 curves do not match.
Examining the 3 days of data suggests that the
mean and variance should be approximated for
no more than a 24 hour period. Such an ap-
proximation would be more accurate, but only
marginally more complicated than the standard
blackbody approximation.

2.2 Net Radiosity Approximation

Another common approximation involves both
the long-wave insolation and the convection.
Assuming the atmosphere is a blackbody radi-
ator (as above), and that the atmosphere com-
pletely surrounds the material, then

WAy, — eaTH(t) ~ W, —eoTi(t)
~ eo(Th — TJ(1)

Note that this is a blackbody approximation be-
cause ey = 1. The € on the right-hand side of
the equation comes from a; = €, not the gray-
body assumption. The fourth order term is fac-
tored to obtain

o(To — T} (1))
= 0(Too + Ts(t)) (T2, + T2(t))(Too — Ts(t))
= hr(Too - Ts(t))

where h, is strongly dependent on the temper-
ature.

It is common to ignore the strong dependence of
h, on the temperature. For a fixed ambient tem-
perature (say T, = 15°C), and a typical varia-
tion in scene temperature (—10°C to 40°C) the
error due to the linearity assumption is on the
order of 10% (see Figure 4). This approxima-
tion could be dramatically improved if a linear
function of the temperature was used (in place
of a constant). However, for the current approx-
imation, the error associated with assuming h,
is constant is negligible compared to the error
associated with the blackbody assumption!

This observation also implies that the gray level,
Ly, of the LWIR image is related to the surface
temperature, T, of the object’s surface by a
linear relationship,
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Figure 3: The net radiosity using the black-
body approximation. The error due
to the blackbody approximation is
unacceptably high. Better approxi-
mation methods are suggested in the
text.
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Figure 4: Approximating the net radiosity as
a linear function. For T, = 15°C,
and Ty € [—10°C,40°C], the error
due to this approximation is < 10%.
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The net radiosity using the black-
body approximation and a constant
hy. The error due to assuming h,
is constant is negligible compared
to the error from the blackbody ap-

Figure 5:

proximation.
1
Ly = B(Ts + ). (2)

where [ and p are related to the IR camera
imaging parameters, gain and offset. This ap-
proximation is used to create algebraic invariant
features that do not require radiometric calibra-
tion.

2.3 Thermal Storage Approximation

The conservation statement may be written in
terms of a unit surface area instead of a unit vol-
ume. The result of considering the surface heat
flux is that the thermal storage term is removed
from the original equation. This approximation
is appropriate for materials with a small ther-
mal capacitance (Figure 6).

2.4 Constant Convection Coeflicient

The convection coefficient, h, is commonly as-
sumed to be constant for short time periods (on
the order of 24 hours). This approximation is
shown to have an error of = 5%.
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The thermal storage term of con-
crete over 72 hours. Materials with
a low thermal capacitance can be
modeled by a heat flux. For con-
crete (which has an average thermal
capacitance), the error due to drop-
ping the storage term is on the order
of 1103,
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Approximating the convection coef-
ficient as a constant causes an error

on the order of 5% in the convec-

2
m
tion term of the conservation equa-

tion.
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duces very little error for this data
set, 0.5:0; (At = 2.5 minutes).
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Figure 9: Approximating 7= ~ % intro-
duces errors on the order of 10% for
Az = 2.5cm.

2.5 Approximating the Partial
Derivatives

Temperatures are generally smooth and slow-
changing. In the absence of analytical equa-
tions, derivatives may be approximated by fit-
ting polynomials and calculating the deriva-
tives, or by taking a finite difference. As the
time increment is decreased, these methods con-
verge. Many books discuss approximations of
derivatives, so we will simply show the differ-
ence in using splines or finite-differences as an
approximation.

Each of these approximations has a useful pur-
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Figure 10: Plotting Cr vs. k reveals that
for these 38 construction type ma-
terials, some information can be
extracted. First, the thermal ca-
pacitance increases with the loga-
rithm of the thermal conductance
(in general). Second, very few ma-
terials have a thermal capacitance
around 3000%.

pose. However, the cost with respect to model
accuracy must be understood in order to eval-
uate whether the benefit is commensurate. To
help form the proper perspective, we have found
that it is not uncommon for radiometric calibra-
tion to introduce errors in the surface temper-
atures on the order of 5 K which could easily
produce errors in the conservation equation on
the order of 10%.

3 Groupings of Thermophysical
parameters

Classifiers must handle the problem of differ-
entiating between known and unknown classes.
Ounly by “knowing” all the possible classes can
results be guaranteed universally. Practically,
if common materials have similar bulk material
properties, then similar clusters could be used
to gain confidence that desirable features will
remain useful when used against previously un-
known (but similar) classes. Figure 10 shows a
scatter plot of thermal conductance versus ther-
mal capacitance for 38 construction type mate-
rials drawn from [Brown and Macro, 1958] and
various other heat transfer texts. A thorough
data collection should be representative of the
range and clusters seen in the plot.



Approximation RMS error  %error % error
blackbody 80 28% 80
graybody 34 12% 34
net radiosity 80 96% 80
h, constant 8 10% 8
net radiosity, h, constant 80 96% 80
heat flux - - 11
constant convection coefficient - 38% 5
Lo Ty 13x10°% 3% 0.5
i

- 3 10% 10

Table 1: Summary of the error resulting from common approximations for the thermophysical

model.

4 Quasi-Invariants

Non-trivial absolute invariants are generally
rare. Binford [Binford and Levitt, 1993] de-
fined functions that are “almost always” in-
variant or “slowly changing” as quasi-invariant
functions. Because the restrictions required for
absolute invariance are relaxed, quasi-invariants
are more common. These types of functions
could be just as useful as absolute invariants
in practice. The following theoretical concept
of quasi-invariance is a mathematically rigor-
ous generalization of Binford’s “slowly chang-
ing” concept.

A primary goal in applying quasi-invariance the-
ory is to identify the domain in which these fea-
tures are invariant or nearly invariant (corre-
sponding to the notion of “almost always” in-
variant). These conditions may result from re-
lationships between some of the variables which
are too complex to model. For example, physi-
cal constraints often exist which provide bounds
on the variables. Lie group analysis with in-
equalities is not possible. As a consequence an
empirical approach is necessary.

4.1

Definition 4.1.1 A function ® € hom(M;,R)
is a (6,€) quasi-invariant if for each «p € S,
the function

Theoretical Concept

R
6»—)50590(@)

Do p(T)

satisfies the conditions of continuity at 0 with
the pair (4,¢),

le =0 <6 = |2(1p(2) — 2o ())] < €
Since the elements, .o(T), of the symmetry

group Sp, satisty o g0 = o gp it follows that
continuity at zero implies uniform continuity,

[(a+B) =Bl =la—0][<§
implies
B, 50(@) — B0(@))]
= [2((@) — 2(0p@))] <&
where

7= 3p(T) = op(Y)

Obviously if ® is continuous then & o () is
continuous, so given an arbitrary ¢ there exists a
0 satisfying the condition of continuity. We are
concerned with the converse problem: Given a
0, find an ¢ such that the condition of continu-
ity is satisfied at 0 with the pair (§,¢). (Given
a specific application, one seeks to determine
the value ¢ as small as possible such that the
required condition is satisfied.)

One would expect an absolute invariant @
to satisfy the conditions for being a quasi-
invariant.

Theorem 4.1.2 If ® is an absolute invariant,
then for any positive pair (§,€), ® is a (6,&)
quasi-tnvariant.



Proof. This is immediate since for an absolute
function ®

?(p(7)) = @(T)

so for any § > 0 and any £ > 0

V.p(T) € Su, Ve

e—0] < o
U
[2(p(@)) — 2(op(@))| = [2(p(T)) — 2(T)|
= 0<¢

The motivation for the definition of a (4,¢)
quasi-invariant with respect to object recogni-
tion is the following: Given a quasi-invariant
function, ® ; for each class j, and a measurement
T, then <T>j (ZTr) varies slowly if j = k, thereby
satisfying the (0;,&;) conditions. If j # k&,
then (fj (Zx) will not vary slowly, and therefore
the (d;,&;) condition will not be satisfied. The
problem of separating classes is directly related
to the variance of <T>j (ZTg),j # k. This immedi-
ately implies that a time sequence of data will
generally be necessary.

Another possible method for use of quasi-
invariant functions is to develop one function, (f,
for classes of the same form but different param-
eters. A typical range of ® can be determined
for each class. Then for a given measurement
Zj, é(fj) serves as an indexing function into
class j. Simulated or empirical data is necessary
to determine which classes are separable (by dif-
ferent values of this function). This second for-
mulation would allow identification with a sin-
gle data point, however it is unlikely that the
different classes can be described by the same
quasi-invariant form with different parameters.

4.2 An Algorithm for Determining
Quasi-invariants

No guarantee is given that useful quasi-
invariants exist (trivial ones always exist). How-
ever, the following construction algorithm is
one method to seek out non-trivial (and hope-
fully useful) quasi-invariants. We call these
dominant-subspace invariants (DSI’s). Since a
single method for finding useful quasi-invariants

does not exist, any technique that produces a
quasi-invariant that satisfies the definition is
valid.

The tangent vectors (infinitesimal generators)
are a vector field set which forms a basis for the
killing fields. The tangent vectors {7;}i=1,...m
determine the transformation groups (we will
use the convention m = n — 1 throughout the
remainder of the paper). Absolute invariant
functions are found by solving the characteris-
tic equations associated with these tangent vec-
tors. A necessary and sufficient condition for a
function ® to be invariant under the symmetry
group determined by the generators is

Absolute invariants are rare, and therefore by
relaxing the requirements for absolute invari-
ance, the chance of finding a useful classifier is
increased.

A (0,€) quasi-invariant function ® is a function
which satisfies

e—0] < 4

=

|2(p(T)) — @(op (@) |[@(p(7)) — @(7)|

= 0<¢

For a small §, the goal is to find as tight a bound
¢ as possible, thereby making d nearly constant.
This condition is equivalent to finding a function
® such that the derivative is small in magnitude

d(p(@) | _
sl o

Theoretically, if this quantity is nonzero, then
by speeding up (scaling) the curve, .o, this
quantity can be made arbitrarily large. There-
fore, the necessary restriction is that the quan-
tity be empirically small. Since

ds(pxj (E) . dE(,O(T) (I)
de de

(4)

it is equivalent to seek ® such that

‘ d.p(T)
de

&)H ~ 0 (5)



Solving the characteristic equations associated
with the tangent vectors {7;}i—1,. ., yields
the invariant . Solving the characteris-
tic equations associated with some subset of
{M;}i=1,..,m,» say without loss of generality
{7 h=1,...m—1 yields a function ®. The subset
defines a subspace, and the function satisfies
7,® =0

h=1,....m—1 (6)

while _
Tm® #0 (7)

Thus solving these characteristic equations
gives
ds(p(f)&)

de =0

d‘P(

where Zh 1 9n 7y Coupling this with
the desu"ed property that %

magnitude gives the equations

® be small in

dp(T) ~

d = 0
de
de(p(f)N

P =
de 0

Subtracting the two, and using linearity of tan-
gent vectors gives

<d§<§£f) B ds§£5)> & ~0 (8)

But

(5 2o

- (ou (5245

and by the Cauchy-Schwartz inequality,

I(ve (557 - =)

<[ve |(“57 - 2]

Vo {& ,...,& } is a
| Ot @’ 7 0 | o(@)

bounded vector since Ya € [0, d] the restriction
of V® o () to [0,4] gives a continuous image

of a compact set- hence Vé‘ - is compact,
T

therefore bounded.

Now, say HV@H < K. Then to make

dp(E) W@)>
de de

® as small as possible, min-

(G| I

The tightest bound is achieved if HV@H is not
only bounded, but constant.

1mize

This is one method for minimizing the inner
product. Other methods may form a tighter
bound on equation (8). This new minimization
replaces the last original constraint for an abso-
lute invariant

Tn® =0

Consider the differential equation characteriz-
ing the transformation group of .

@i@:<§%ﬁy#m>

The curves can be expressed as functions rela-
tive to the moving basis 7] (we use ‘moving basis’
because ‘moving frame’ generally implies an or-
thonormal basis). By curve fitting experimental

data, the vector fields 5(’0( %) can be determined.
The vector fields, 7, deﬁne a local coordinate
system for the surface derivatives, and are de-
rived analytically by Lie group analysis. There-
fore, the scalar coefficients g € C'(R™) can be
determined from the other terms. By decom-
posing the moving basis into principal compo-
nents, a subspace of the tangent space deter-
mined by the infinitesimal generators may be
discovered. Such a subspace could be the result
of “overlooking” some physical constraint that
is not accounted for by the single equation mod-
eling the problem — the conservation of energy
equation.

Rewriting

(222
‘Kg%m—i%mymmH

gSmnSm ||

equation (7) indicates that ﬁsTn(I) # 0. The test
for a subspace is performed by comparing
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Figure 11: Diagram of the relation between
different types of invariants.

40, (@) _ dapy, @) _ | des, @) |
de de de
In the limiting case, gs,, = 0, a (non-trivial)

true subspace invariant exists! The distinction
from an absolute invariant is in the definition.
An absolute invariant function is defined by its
vanishing inner product with a basis element 7;,
but a DSI is defined by a vanishing coefficient,
gs,,- The result, ® = constant, is identical.
Note, we can not conclude that absolute invari-
ants do not exist under the case that DSI’s do
not exist. In other words, if (non-trivial) DSI’s
do not exist, then (non-trivial) absolute invari-
ants may still exist. See Figure 11. This argu-
ment may be relaxed to ||gs,,|| ~ 0 for |7, ||
sufficiently small.

4.2.1 A Constructive Algorithm for
Calculating Dominant

Subspace Invariants

1. Create unitless variables by dividing each
variable in the conservation equation, f,
by its RMS value, and multiplying its cor-
responding coefficient by the same RMS

value. This new conservation equation is

fu-

2. Analytically determine a set of vector
fields, 77, which form a basis for the killing
fields of f.

3. Compute the coefficients of the commuta-

tor table (discussed below). Find a new
basis, 7,, such that all the coefficients are
0.

4. Find the principal components of 77, to de-
termine a new basis, 7, for the killing fields
such that equation (9) is minimized.

5. Solve the set of characteristic equations
corresponding to ﬁsh(f = 0 for h =
1,...,m —1 to find the general form of o.
This part of the calculation of the DSI pro-
ceeds exactly as it did in the determination
of (absolute) invariants except that the fi-
nal infinitesimal generator has not been ex-
plicitly satisfied.

6. Further experimentation is necessary to de-
termine if the DSI is useful.

5 Results

Applying this algorithm to a thermocouple data
set, we found the following dominant-subspace
invariant

@[Sy x5+ Spxr + Sexny + Sqwa + Sexy — 7]

(11)
where the S, are constants that are dependent
upon the particular material.

In Figure 12, the dark dotted line represents
® when the observed material matches the hy-
pothesized material, concrete, during a 72 hours
test. The remaining lines illustrate that d
changes its characteristic if the hypothesis does
not match the observed material. Concrete can-
not be separated from painted concrete. Con-
crete (plain and painted) clearly yields the best
DSI in terms of relative stability, separation,
and generalization.

6 Summary

The techniques of Lie group analysis provide a
powerful tool for determining absolute invari-
ant functions which can serve as classifier func-
tions for object recognition problems.
ously, we applied this analysis to the thermo-
physical model and proved that there are only
trivial absolute invariant functions.

Previ-



Sa Sp Se Sy Se
Asphalt —0.002 —0.051 0.001 0.591 0.095
Painted Asphalt | —0.002 —0.042 0.000 0.511 0.083
Concrete —0.001 —0.006 —0.000 0.005 0.947
Painted Concrete | —0.000 —0.005 —0.000 —0.004 0.949
Clay —0.002 —-0.014 —0.000 0.046 0.916
Gravel —0.002 —-0.014 —0.000 0.066 0.866
Grass —0.002 —0.030  0.000 0.327 0.403

Table 2: Coeflicients for the ‘principal’ basis and dominant-subspace invariant for each material.
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Figure 12: 72 hours of results for the concrete hypothesis.

We present quantitative errors for several model
approximations. We also presented a definition
for quasi-invariance, and an algorithm for find-
ing a particular type of quasi-invariant called
a dominant-subspace invariant. We found a
dominant-subspace invariant for the thermo-
physical model and illustrated the ideal result
as applied to concrete. Further details and re-
sults are available by contacting the authors.
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